1
Fork 0

chore(deps): update dependency numpy to v2.2.5 #213

Merged
lucas merged 1 commit from renovate/numpy-2.x into master 2025-04-22 15:37:24 +02:00
Collaborator

This PR contains the following updates:

Package Update Change
numpy (changelog) patch ==2.2.4 -> ==2.2.5

Release Notes

numpy/numpy (numpy)

v2.2.5: (Apr 19, 2025)

Compare Source

NumPy 2.2.5 Release Notes

NumPy 2.2.5 is a patch release that fixes bugs found after the 2.2.4
release. It has a large number of typing fixes/improvements as well as
the normal bug fixes and some CI maintenance.

This release supports Python versions 3.10-3.13.

Contributors

A total of 7 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Charles Harris
  • Joren Hammudoglu
  • Baskar Gopinath +
  • Nathan Goldbaum
  • Nicholas Christensen +
  • Sayed Adel
  • karl +

Pull requests merged

A total of 19 pull requests were merged for this release.

  • #​28545: MAINT: Prepare 2.2.x for further development
  • #​28582: BUG: Fix return type of NpyIter_GetIterNext in Cython declarations
  • #​28583: BUG: avoid deadlocks with C++ shared mutex in dispatch cache
  • #​28585: TYP: fix typing errors in _core.strings
  • #​28631: MAINT, CI: Update Ubuntu to 22.04 in azure-pipelines
  • #​28632: BUG: Set writeable flag for writeable dlpacks.
  • #​28633: BUG: Fix crackfortran parsing error when a division occurs within...
  • #​28650: TYP: fix ndarray.tolist() and .item() for unknown dtype
  • #​28654: BUG: fix deepcopying StringDType arrays (#​28643)
  • #​28661: TYP: Accept objects that write() to str in savetxt
  • #​28663: CI: Replace QEMU armhf with native (32-bit compatibility mode)
  • #​28682: SIMD: Resolve Highway QSort symbol linking error on aarch32/ASIMD
  • #​28683: TYP: add missing "b1" literals for dtype[bool]
  • #​28705: TYP: Fix false rejection of NDArray[object_].__abs__()
  • #​28706: TYP: Fix inconsistent NDArray[float64].__[r]truediv__ return...
  • #​28723: TYP: fix string-like ndarray rich comparison operators
  • #​28758: TYP: some [arg]partition fixes
  • #​28772: TYP: fix incorrect random.Generator.integers return type
  • #​28774: TYP: fix count_nonzero signature

Checksums

MD5
3a5d0889d6d7951f44bc6f7a03fa30c6  numpy-2.2.5-cp310-cp310-macosx_10_9_x86_64.whl
bcf9f4e768b070e17b2635f422a6e27d  numpy-2.2.5-cp310-cp310-macosx_11_0_arm64.whl
e82c8fa47a65bb5c2c83295f549dab12  numpy-2.2.5-cp310-cp310-macosx_14_0_arm64.whl
a5511a995c0f79a8b9a81f2b50e9f692  numpy-2.2.5-cp310-cp310-macosx_14_0_x86_64.whl
72bfc1f98238a8e4ba08999e61111e0e  numpy-2.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
146c83a5b8099d8d2607392b2ef7fedf  numpy-2.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6ebdc80b54b008a10575e5d7bbb613f5  numpy-2.2.5-cp310-cp310-musllinux_1_2_aarch64.whl
97efde6443da8f9280a5fc2614a087e5  numpy-2.2.5-cp310-cp310-musllinux_1_2_x86_64.whl
c143f352206cec535b41b6b1d34c5898  numpy-2.2.5-cp310-cp310-win32.whl
0b17fbbf584785f675f1c5b24a00ff93  numpy-2.2.5-cp310-cp310-win_amd64.whl
58532622d7eff69a3c71c1ae89dea070  numpy-2.2.5-cp311-cp311-macosx_10_9_x86_64.whl
0d002c733bb02debe0b15de5ba872d1e  numpy-2.2.5-cp311-cp311-macosx_11_0_arm64.whl
ff0c736c60be96506806061ace2251a1  numpy-2.2.5-cp311-cp311-macosx_14_0_arm64.whl
4febdec973c4405fd08ef35e0c130de1  numpy-2.2.5-cp311-cp311-macosx_14_0_x86_64.whl
0bf4e457c612e565420e135458e70fe0  numpy-2.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a43b608ad15ebdc0960611497205d598  numpy-2.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7b4b1afd412149a9af7c25d7346fade8  numpy-2.2.5-cp311-cp311-musllinux_1_2_aarch64.whl
a1e70be013820f92dbfd4796fc4044bb  numpy-2.2.5-cp311-cp311-musllinux_1_2_x86_64.whl
73344e05a6fec0b38183363b4a026252  numpy-2.2.5-cp311-cp311-win32.whl
b7d5fdd23057c58d15c84eef6bfedb55  numpy-2.2.5-cp311-cp311-win_amd64.whl
801b11bb546aac2d92d7b3d5d6c90e86  numpy-2.2.5-cp312-cp312-macosx_10_13_x86_64.whl
68dc4298cad9405ad30cfb723be4ae48  numpy-2.2.5-cp312-cp312-macosx_11_0_arm64.whl
c31c872e0fa8df5ed7f91882621a925f  numpy-2.2.5-cp312-cp312-macosx_14_0_arm64.whl
179dfa545c32c44b77cf8db3b973785f  numpy-2.2.5-cp312-cp312-macosx_14_0_x86_64.whl
4562513ff2f1e3f31d66b8e435000141  numpy-2.2.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c80a2d8aab1a4d6a66f3fca2f0744744  numpy-2.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e363e0d8c116522d55b0ddd0cbf2de67  numpy-2.2.5-cp312-cp312-musllinux_1_2_aarch64.whl
d31d443270c76b7238ece2f87b048d21  numpy-2.2.5-cp312-cp312-musllinux_1_2_x86_64.whl
bf469fe048fa4ed75a5d8725297e283a  numpy-2.2.5-cp312-cp312-win32.whl
069b832aa15b6a815497135e7fa8cae8  numpy-2.2.5-cp312-cp312-win_amd64.whl
b2cf059c831cbcfdb4044613a1e5bc8d  numpy-2.2.5-cp313-cp313-macosx_10_13_x86_64.whl
70bcb93e55ff0f6602636602e0834607  numpy-2.2.5-cp313-cp313-macosx_11_0_arm64.whl
00c4938d67fd5b658ad92ac26fbe9cab  numpy-2.2.5-cp313-cp313-macosx_14_0_arm64.whl
0ca38aa51874b9252a2c9d85f81dcd07  numpy-2.2.5-cp313-cp313-macosx_14_0_x86_64.whl
6062cf707b8bc07a1600af0991a0a88e  numpy-2.2.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
62c1cf7de0327546f3a1e3852de640d3  numpy-2.2.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ab3ad3390396552f76160139cc528784  numpy-2.2.5-cp313-cp313-musllinux_1_2_aarch64.whl
d258ba55c9a3936fa0c113cac8bbc0cc  numpy-2.2.5-cp313-cp313-musllinux_1_2_x86_64.whl
59bb7e1acb81fc4a02c3b791e110f01e  numpy-2.2.5-cp313-cp313-win32.whl
2e5728a9e5c6405d3a22138e4dd7019f  numpy-2.2.5-cp313-cp313-win_amd64.whl
d315521ec7275d0341787f2450e57e55  numpy-2.2.5-cp313-cp313t-macosx_10_13_x86_64.whl
17018c7c259ae81cf2ca4f58523d7d1c  numpy-2.2.5-cp313-cp313t-macosx_11_0_arm64.whl
ef6fd6a9c6a07db004a272b82f0ea710  numpy-2.2.5-cp313-cp313t-macosx_14_0_arm64.whl
07b2baf70b84b44ca6924794d9c7e431  numpy-2.2.5-cp313-cp313t-macosx_14_0_x86_64.whl
a2fb1ed562d2b6da091d980c7486d113  numpy-2.2.5-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
22fa9137283f463436d7b20a220071cd  numpy-2.2.5-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b0ae924e4834155eb5ac159ae611c292  numpy-2.2.5-cp313-cp313t-musllinux_1_2_aarch64.whl
c7a8351484f2df9a499c68f1ac73121c  numpy-2.2.5-cp313-cp313t-musllinux_1_2_x86_64.whl
1da753e4127a0bdcdfbfa6639568057e  numpy-2.2.5-cp313-cp313t-win32.whl
a8c869efc0888f214239e5c4f0e6acfb  numpy-2.2.5-cp313-cp313t-win_amd64.whl
7255b93f38e7d54a59d6798182f24c6a  numpy-2.2.5-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
6743ce025de6c245b03ca8511b306503  numpy-2.2.5-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
5abbeec4ff2add1c46f8779f730c73fa  numpy-2.2.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8e2e01f02d05e111ef2b104d1b3afad1  numpy-2.2.5-pp310-pypy310_pp73-win_amd64.whl
df2e46b468f9fdf06b13b04eca9a723f  numpy-2.2.5.tar.gz
SHA256
1f4a922da1729f4c40932b2af4fe84909c7a6e167e6e99f71838ce3a29f3fe26  numpy-2.2.5-cp310-cp310-macosx_10_9_x86_64.whl
b6f91524d31b34f4a5fee24f5bc16dcd1491b668798b6d85585d836c1e633a6a  numpy-2.2.5-cp310-cp310-macosx_11_0_arm64.whl
19f4718c9012e3baea91a7dba661dcab2451cda2550678dc30d53acb91a7290f  numpy-2.2.5-cp310-cp310-macosx_14_0_arm64.whl
eb7fd5b184e5d277afa9ec0ad5e4eb562ecff541e7f60e69ee69c8d59e9aeaba  numpy-2.2.5-cp310-cp310-macosx_14_0_x86_64.whl
6413d48a9be53e183eb06495d8e3b006ef8f87c324af68241bbe7a39e8ff54c3  numpy-2.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7451f92eddf8503c9b8aa4fe6aa7e87fd51a29c2cfc5f7dbd72efde6c65acf57  numpy-2.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0bcb1d057b7571334139129b7f941588f69ce7c4ed15a9d6162b2ea54ded700c  numpy-2.2.5-cp310-cp310-musllinux_1_2_aarch64.whl
36ab5b23915887543441efd0417e6a3baa08634308894316f446027611b53bf1  numpy-2.2.5-cp310-cp310-musllinux_1_2_x86_64.whl
422cc684f17bc963da5f59a31530b3936f57c95a29743056ef7a7903a5dbdf88  numpy-2.2.5-cp310-cp310-win32.whl
e4f0b035d9d0ed519c813ee23e0a733db81ec37d2e9503afbb6e54ccfdee0fa7  numpy-2.2.5-cp310-cp310-win_amd64.whl
c42365005c7a6c42436a54d28c43fe0e01ca11eb2ac3cefe796c25a5f98e5e9b  numpy-2.2.5-cp311-cp311-macosx_10_9_x86_64.whl
498815b96f67dc347e03b719ef49c772589fb74b8ee9ea2c37feae915ad6ebda  numpy-2.2.5-cp311-cp311-macosx_11_0_arm64.whl
6411f744f7f20081b1b4e7112e0f4c9c5b08f94b9f086e6f0adf3645f85d3a4d  numpy-2.2.5-cp311-cp311-macosx_14_0_arm64.whl
9de6832228f617c9ef45d948ec1cd8949c482238d68b2477e6f642c33a7b0a54  numpy-2.2.5-cp311-cp311-macosx_14_0_x86_64.whl
369e0d4647c17c9363244f3468f2227d557a74b6781cb62ce57cf3ef5cc7c610  numpy-2.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
262d23f383170f99cd9191a7c85b9a50970fe9069b2f8ab5d786eca8a675d60b  numpy-2.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
aa70fdbdc3b169d69e8c59e65c07a1c9351ceb438e627f0fdcd471015cd956be  numpy-2.2.5-cp311-cp311-musllinux_1_2_aarch64.whl
37e32e985f03c06206582a7323ef926b4e78bdaa6915095ef08070471865b906  numpy-2.2.5-cp311-cp311-musllinux_1_2_x86_64.whl
f5045039100ed58fa817a6227a356240ea1b9a1bc141018864c306c1a16d4175  numpy-2.2.5-cp311-cp311-win32.whl
b13f04968b46ad705f7c8a80122a42ae8f620536ea38cf4bdd374302926424dd  numpy-2.2.5-cp311-cp311-win_amd64.whl
ee461a4eaab4f165b68780a6a1af95fb23a29932be7569b9fab666c407969051  numpy-2.2.5-cp312-cp312-macosx_10_13_x86_64.whl
ec31367fd6a255dc8de4772bd1658c3e926d8e860a0b6e922b615e532d320ddc  numpy-2.2.5-cp312-cp312-macosx_11_0_arm64.whl
47834cde750d3c9f4e52c6ca28a7361859fcaf52695c7dc3cc1a720b8922683e  numpy-2.2.5-cp312-cp312-macosx_14_0_arm64.whl
2c1a1c6ccce4022383583a6ded7bbcda22fc635eb4eb1e0a053336425ed36dfa  numpy-2.2.5-cp312-cp312-macosx_14_0_x86_64.whl
9d75f338f5f79ee23548b03d801d28a505198297534f62416391857ea0479571  numpy-2.2.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3a801fef99668f309b88640e28d261991bfad9617c27beda4a3aec4f217ea073  numpy-2.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
abe38cd8381245a7f49967a6010e77dbf3680bd3627c0fe4362dd693b404c7f8  numpy-2.2.5-cp312-cp312-musllinux_1_2_aarch64.whl
5a0ac90e46fdb5649ab6369d1ab6104bfe5854ab19b645bf5cda0127a13034ae  numpy-2.2.5-cp312-cp312-musllinux_1_2_x86_64.whl
0cd48122a6b7eab8f06404805b1bd5856200e3ed6f8a1b9a194f9d9054631beb  numpy-2.2.5-cp312-cp312-win32.whl
ced69262a8278547e63409b2653b372bf4baff0870c57efa76c5703fd6543282  numpy-2.2.5-cp312-cp312-win_amd64.whl
059b51b658f4414fff78c6d7b1b4e18283ab5fa56d270ff212d5ba0c561846f4  numpy-2.2.5-cp313-cp313-macosx_10_13_x86_64.whl
47f9ed103af0bc63182609044b0490747e03bd20a67e391192dde119bf43d52f  numpy-2.2.5-cp313-cp313-macosx_11_0_arm64.whl
261a1ef047751bb02f29dfe337230b5882b54521ca121fc7f62668133cb119c9  numpy-2.2.5-cp313-cp313-macosx_14_0_arm64.whl
4520caa3807c1ceb005d125a75e715567806fed67e315cea619d5ec6e75a4191  numpy-2.2.5-cp313-cp313-macosx_14_0_x86_64.whl
3d14b17b9be5f9c9301f43d2e2a4886a33b53f4e6fdf9ca2f4cc60aeeee76372  numpy-2.2.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2ba321813a00e508d5421104464510cc962a6f791aa2fca1c97b1e65027da80d  numpy-2.2.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a4cbdef3ddf777423060c6f81b5694bad2dc9675f110c4b2a60dc0181543fac7  numpy-2.2.5-cp313-cp313-musllinux_1_2_aarch64.whl
54088a5a147ab71a8e7fdfd8c3601972751ded0739c6b696ad9cb0343e21ab73  numpy-2.2.5-cp313-cp313-musllinux_1_2_x86_64.whl
c8b82a55ef86a2d8e81b63da85e55f5537d2157165be1cb2ce7cfa57b6aef38b  numpy-2.2.5-cp313-cp313-win32.whl
d8882a829fd779f0f43998e931c466802a77ca1ee0fe25a3abe50278616b1471  numpy-2.2.5-cp313-cp313-win_amd64.whl
e8b025c351b9f0e8b5436cf28a07fa4ac0204d67b38f01433ac7f9b870fa38c6  numpy-2.2.5-cp313-cp313t-macosx_10_13_x86_64.whl
8dfa94b6a4374e7851bbb6f35e6ded2120b752b063e6acdd3157e4d2bb922eba  numpy-2.2.5-cp313-cp313t-macosx_11_0_arm64.whl
97c8425d4e26437e65e1d189d22dff4a079b747ff9c2788057bfb8114ce1e133  numpy-2.2.5-cp313-cp313t-macosx_14_0_arm64.whl
352d330048c055ea6db701130abc48a21bec690a8d38f8284e00fab256dc1376  numpy-2.2.5-cp313-cp313t-macosx_14_0_x86_64.whl
8b4c0773b6ada798f51f0f8e30c054d32304ccc6e9c5d93d46cb26f3d385ab19  numpy-2.2.5-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
55f09e00d4dccd76b179c0f18a44f041e5332fd0e022886ba1c0bbf3ea4a18d0  numpy-2.2.5-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
02f226baeefa68f7d579e213d0f3493496397d8f1cff5e2b222af274c86a552a  numpy-2.2.5-cp313-cp313t-musllinux_1_2_aarch64.whl
c26843fd58f65da9491165072da2cccc372530681de481ef670dcc8e27cfb066  numpy-2.2.5-cp313-cp313t-musllinux_1_2_x86_64.whl
1a161c2c79ab30fe4501d5a2bbfe8b162490757cf90b7f05be8b80bc02f7bb8e  numpy-2.2.5-cp313-cp313t-win32.whl
d403c84991b5ad291d3809bace5e85f4bbf44a04bdc9a88ed2bb1807b3360bb8  numpy-2.2.5-cp313-cp313t-win_amd64.whl
b4ea7e1cff6784e58fe281ce7e7f05036b3e1c89c6f922a6bfbc0a7e8768adbe  numpy-2.2.5-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
d7543263084a85fbc09c704b515395398d31d6395518446237eac219eab9e55e  numpy-2.2.5-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
0255732338c4fdd00996c0421884ea8a3651eea555c3a56b84892b66f696eb70  numpy-2.2.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d2e3bdadaba0e040d1e7ab39db73e0afe2c74ae277f5614dad53eadbecbbb169  numpy-2.2.5-pp310-pypy310_pp73-win_amd64.whl
a9c0d994680cd991b1cb772e8b297340085466a6fe964bc9d4e80f5e2f43c291  numpy-2.2.5.tar.gz

Configuration

📅 Schedule: Branch creation - At any time (no schedule defined), Automerge - At any time (no schedule defined).

🚦 Automerge: Disabled by config. Please merge this manually once you are satisfied.

Rebasing: Whenever PR is behind base branch, or you tick the rebase/retry checkbox.

🔕 Ignore: Close this PR and you won't be reminded about this update again.


  • If you want to rebase/retry this PR, check this box

This PR has been generated by Renovate Bot.

This PR contains the following updates: | Package | Update | Change | |---|---|---| | [numpy](https://github.com/numpy/numpy) ([changelog](https://numpy.org/doc/stable/release)) | patch | `==2.2.4` -> `==2.2.5` | --- ### Release Notes <details> <summary>numpy/numpy (numpy)</summary> ### [`v2.2.5`](https://github.com/numpy/numpy/releases/tag/v2.2.5): (Apr 19, 2025) [Compare Source](https://github.com/numpy/numpy/compare/v2.2.4...v2.2.5) ### NumPy 2.2.5 Release Notes NumPy 2.2.5 is a patch release that fixes bugs found after the 2.2.4 release. It has a large number of typing fixes/improvements as well as the normal bug fixes and some CI maintenance. This release supports Python versions 3.10-3.13. #### Contributors A total of 7 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Charles Harris - Joren Hammudoglu - Baskar Gopinath + - Nathan Goldbaum - Nicholas Christensen + - Sayed Adel - karl + #### Pull requests merged A total of 19 pull requests were merged for this release. - [#&#8203;28545](https://github.com/numpy/numpy/pull/28545): MAINT: Prepare 2.2.x for further development - [#&#8203;28582](https://github.com/numpy/numpy/pull/28582): BUG: Fix return type of NpyIter_GetIterNext in Cython declarations - [#&#8203;28583](https://github.com/numpy/numpy/pull/28583): BUG: avoid deadlocks with C++ shared mutex in dispatch cache - [#&#8203;28585](https://github.com/numpy/numpy/pull/28585): TYP: fix typing errors in `_core.strings` - [#&#8203;28631](https://github.com/numpy/numpy/pull/28631): MAINT, CI: Update Ubuntu to 22.04 in azure-pipelines - [#&#8203;28632](https://github.com/numpy/numpy/pull/28632): BUG: Set writeable flag for writeable dlpacks. - [#&#8203;28633](https://github.com/numpy/numpy/pull/28633): BUG: Fix crackfortran parsing error when a division occurs within... - [#&#8203;28650](https://github.com/numpy/numpy/pull/28650): TYP: fix `ndarray.tolist()` and `.item()` for unknown dtype - [#&#8203;28654](https://github.com/numpy/numpy/pull/28654): BUG: fix deepcopying StringDType arrays ([#&#8203;28643](https://github.com/numpy/numpy/issues/28643)) - [#&#8203;28661](https://github.com/numpy/numpy/pull/28661): TYP: Accept objects that `write()` to `str` in `savetxt` - [#&#8203;28663](https://github.com/numpy/numpy/pull/28663): CI: Replace QEMU armhf with native (32-bit compatibility mode) - [#&#8203;28682](https://github.com/numpy/numpy/pull/28682): SIMD: Resolve Highway QSort symbol linking error on aarch32/ASIMD - [#&#8203;28683](https://github.com/numpy/numpy/pull/28683): TYP: add missing `"b1"` literals for `dtype[bool]` - [#&#8203;28705](https://github.com/numpy/numpy/pull/28705): TYP: Fix false rejection of `NDArray[object_].__abs__()` - [#&#8203;28706](https://github.com/numpy/numpy/pull/28706): TYP: Fix inconsistent `NDArray[float64].__[r]truediv__` return... - [#&#8203;28723](https://github.com/numpy/numpy/pull/28723): TYP: fix string-like `ndarray` rich comparison operators - [#&#8203;28758](https://github.com/numpy/numpy/pull/28758): TYP: some `[arg]partition` fixes - [#&#8203;28772](https://github.com/numpy/numpy/pull/28772): TYP: fix incorrect `random.Generator.integers` return type - [#&#8203;28774](https://github.com/numpy/numpy/pull/28774): TYP: fix `count_nonzero` signature #### Checksums ##### MD5 3a5d0889d6d7951f44bc6f7a03fa30c6 numpy-2.2.5-cp310-cp310-macosx_10_9_x86_64.whl bcf9f4e768b070e17b2635f422a6e27d numpy-2.2.5-cp310-cp310-macosx_11_0_arm64.whl e82c8fa47a65bb5c2c83295f549dab12 numpy-2.2.5-cp310-cp310-macosx_14_0_arm64.whl a5511a995c0f79a8b9a81f2b50e9f692 numpy-2.2.5-cp310-cp310-macosx_14_0_x86_64.whl 72bfc1f98238a8e4ba08999e61111e0e numpy-2.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 146c83a5b8099d8d2607392b2ef7fedf numpy-2.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 6ebdc80b54b008a10575e5d7bbb613f5 numpy-2.2.5-cp310-cp310-musllinux_1_2_aarch64.whl 97efde6443da8f9280a5fc2614a087e5 numpy-2.2.5-cp310-cp310-musllinux_1_2_x86_64.whl c143f352206cec535b41b6b1d34c5898 numpy-2.2.5-cp310-cp310-win32.whl 0b17fbbf584785f675f1c5b24a00ff93 numpy-2.2.5-cp310-cp310-win_amd64.whl 58532622d7eff69a3c71c1ae89dea070 numpy-2.2.5-cp311-cp311-macosx_10_9_x86_64.whl 0d002c733bb02debe0b15de5ba872d1e numpy-2.2.5-cp311-cp311-macosx_11_0_arm64.whl ff0c736c60be96506806061ace2251a1 numpy-2.2.5-cp311-cp311-macosx_14_0_arm64.whl 4febdec973c4405fd08ef35e0c130de1 numpy-2.2.5-cp311-cp311-macosx_14_0_x86_64.whl 0bf4e457c612e565420e135458e70fe0 numpy-2.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a43b608ad15ebdc0960611497205d598 numpy-2.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7b4b1afd412149a9af7c25d7346fade8 numpy-2.2.5-cp311-cp311-musllinux_1_2_aarch64.whl a1e70be013820f92dbfd4796fc4044bb numpy-2.2.5-cp311-cp311-musllinux_1_2_x86_64.whl 73344e05a6fec0b38183363b4a026252 numpy-2.2.5-cp311-cp311-win32.whl b7d5fdd23057c58d15c84eef6bfedb55 numpy-2.2.5-cp311-cp311-win_amd64.whl 801b11bb546aac2d92d7b3d5d6c90e86 numpy-2.2.5-cp312-cp312-macosx_10_13_x86_64.whl 68dc4298cad9405ad30cfb723be4ae48 numpy-2.2.5-cp312-cp312-macosx_11_0_arm64.whl c31c872e0fa8df5ed7f91882621a925f numpy-2.2.5-cp312-cp312-macosx_14_0_arm64.whl 179dfa545c32c44b77cf8db3b973785f numpy-2.2.5-cp312-cp312-macosx_14_0_x86_64.whl 4562513ff2f1e3f31d66b8e435000141 numpy-2.2.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl c80a2d8aab1a4d6a66f3fca2f0744744 numpy-2.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e363e0d8c116522d55b0ddd0cbf2de67 numpy-2.2.5-cp312-cp312-musllinux_1_2_aarch64.whl d31d443270c76b7238ece2f87b048d21 numpy-2.2.5-cp312-cp312-musllinux_1_2_x86_64.whl bf469fe048fa4ed75a5d8725297e283a numpy-2.2.5-cp312-cp312-win32.whl 069b832aa15b6a815497135e7fa8cae8 numpy-2.2.5-cp312-cp312-win_amd64.whl b2cf059c831cbcfdb4044613a1e5bc8d numpy-2.2.5-cp313-cp313-macosx_10_13_x86_64.whl 70bcb93e55ff0f6602636602e0834607 numpy-2.2.5-cp313-cp313-macosx_11_0_arm64.whl 00c4938d67fd5b658ad92ac26fbe9cab numpy-2.2.5-cp313-cp313-macosx_14_0_arm64.whl 0ca38aa51874b9252a2c9d85f81dcd07 numpy-2.2.5-cp313-cp313-macosx_14_0_x86_64.whl 6062cf707b8bc07a1600af0991a0a88e numpy-2.2.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 62c1cf7de0327546f3a1e3852de640d3 numpy-2.2.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl ab3ad3390396552f76160139cc528784 numpy-2.2.5-cp313-cp313-musllinux_1_2_aarch64.whl d258ba55c9a3936fa0c113cac8bbc0cc numpy-2.2.5-cp313-cp313-musllinux_1_2_x86_64.whl 59bb7e1acb81fc4a02c3b791e110f01e numpy-2.2.5-cp313-cp313-win32.whl 2e5728a9e5c6405d3a22138e4dd7019f numpy-2.2.5-cp313-cp313-win_amd64.whl d315521ec7275d0341787f2450e57e55 numpy-2.2.5-cp313-cp313t-macosx_10_13_x86_64.whl 17018c7c259ae81cf2ca4f58523d7d1c numpy-2.2.5-cp313-cp313t-macosx_11_0_arm64.whl ef6fd6a9c6a07db004a272b82f0ea710 numpy-2.2.5-cp313-cp313t-macosx_14_0_arm64.whl 07b2baf70b84b44ca6924794d9c7e431 numpy-2.2.5-cp313-cp313t-macosx_14_0_x86_64.whl a2fb1ed562d2b6da091d980c7486d113 numpy-2.2.5-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 22fa9137283f463436d7b20a220071cd numpy-2.2.5-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b0ae924e4834155eb5ac159ae611c292 numpy-2.2.5-cp313-cp313t-musllinux_1_2_aarch64.whl c7a8351484f2df9a499c68f1ac73121c numpy-2.2.5-cp313-cp313t-musllinux_1_2_x86_64.whl 1da753e4127a0bdcdfbfa6639568057e numpy-2.2.5-cp313-cp313t-win32.whl a8c869efc0888f214239e5c4f0e6acfb numpy-2.2.5-cp313-cp313t-win_amd64.whl 7255b93f38e7d54a59d6798182f24c6a numpy-2.2.5-pp310-pypy310_pp73-macosx_10_15_x86_64.whl 6743ce025de6c245b03ca8511b306503 numpy-2.2.5-pp310-pypy310_pp73-macosx_14_0_x86_64.whl 5abbeec4ff2add1c46f8779f730c73fa numpy-2.2.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 8e2e01f02d05e111ef2b104d1b3afad1 numpy-2.2.5-pp310-pypy310_pp73-win_amd64.whl df2e46b468f9fdf06b13b04eca9a723f numpy-2.2.5.tar.gz ##### SHA256 1f4a922da1729f4c40932b2af4fe84909c7a6e167e6e99f71838ce3a29f3fe26 numpy-2.2.5-cp310-cp310-macosx_10_9_x86_64.whl b6f91524d31b34f4a5fee24f5bc16dcd1491b668798b6d85585d836c1e633a6a numpy-2.2.5-cp310-cp310-macosx_11_0_arm64.whl 19f4718c9012e3baea91a7dba661dcab2451cda2550678dc30d53acb91a7290f numpy-2.2.5-cp310-cp310-macosx_14_0_arm64.whl eb7fd5b184e5d277afa9ec0ad5e4eb562ecff541e7f60e69ee69c8d59e9aeaba numpy-2.2.5-cp310-cp310-macosx_14_0_x86_64.whl 6413d48a9be53e183eb06495d8e3b006ef8f87c324af68241bbe7a39e8ff54c3 numpy-2.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 7451f92eddf8503c9b8aa4fe6aa7e87fd51a29c2cfc5f7dbd72efde6c65acf57 numpy-2.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0bcb1d057b7571334139129b7f941588f69ce7c4ed15a9d6162b2ea54ded700c numpy-2.2.5-cp310-cp310-musllinux_1_2_aarch64.whl 36ab5b23915887543441efd0417e6a3baa08634308894316f446027611b53bf1 numpy-2.2.5-cp310-cp310-musllinux_1_2_x86_64.whl 422cc684f17bc963da5f59a31530b3936f57c95a29743056ef7a7903a5dbdf88 numpy-2.2.5-cp310-cp310-win32.whl e4f0b035d9d0ed519c813ee23e0a733db81ec37d2e9503afbb6e54ccfdee0fa7 numpy-2.2.5-cp310-cp310-win_amd64.whl c42365005c7a6c42436a54d28c43fe0e01ca11eb2ac3cefe796c25a5f98e5e9b numpy-2.2.5-cp311-cp311-macosx_10_9_x86_64.whl 498815b96f67dc347e03b719ef49c772589fb74b8ee9ea2c37feae915ad6ebda numpy-2.2.5-cp311-cp311-macosx_11_0_arm64.whl 6411f744f7f20081b1b4e7112e0f4c9c5b08f94b9f086e6f0adf3645f85d3a4d numpy-2.2.5-cp311-cp311-macosx_14_0_arm64.whl 9de6832228f617c9ef45d948ec1cd8949c482238d68b2477e6f642c33a7b0a54 numpy-2.2.5-cp311-cp311-macosx_14_0_x86_64.whl 369e0d4647c17c9363244f3468f2227d557a74b6781cb62ce57cf3ef5cc7c610 numpy-2.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 262d23f383170f99cd9191a7c85b9a50970fe9069b2f8ab5d786eca8a675d60b numpy-2.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl aa70fdbdc3b169d69e8c59e65c07a1c9351ceb438e627f0fdcd471015cd956be numpy-2.2.5-cp311-cp311-musllinux_1_2_aarch64.whl 37e32e985f03c06206582a7323ef926b4e78bdaa6915095ef08070471865b906 numpy-2.2.5-cp311-cp311-musllinux_1_2_x86_64.whl f5045039100ed58fa817a6227a356240ea1b9a1bc141018864c306c1a16d4175 numpy-2.2.5-cp311-cp311-win32.whl b13f04968b46ad705f7c8a80122a42ae8f620536ea38cf4bdd374302926424dd numpy-2.2.5-cp311-cp311-win_amd64.whl ee461a4eaab4f165b68780a6a1af95fb23a29932be7569b9fab666c407969051 numpy-2.2.5-cp312-cp312-macosx_10_13_x86_64.whl ec31367fd6a255dc8de4772bd1658c3e926d8e860a0b6e922b615e532d320ddc numpy-2.2.5-cp312-cp312-macosx_11_0_arm64.whl 47834cde750d3c9f4e52c6ca28a7361859fcaf52695c7dc3cc1a720b8922683e numpy-2.2.5-cp312-cp312-macosx_14_0_arm64.whl 2c1a1c6ccce4022383583a6ded7bbcda22fc635eb4eb1e0a053336425ed36dfa numpy-2.2.5-cp312-cp312-macosx_14_0_x86_64.whl 9d75f338f5f79ee23548b03d801d28a505198297534f62416391857ea0479571 numpy-2.2.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 3a801fef99668f309b88640e28d261991bfad9617c27beda4a3aec4f217ea073 numpy-2.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl abe38cd8381245a7f49967a6010e77dbf3680bd3627c0fe4362dd693b404c7f8 numpy-2.2.5-cp312-cp312-musllinux_1_2_aarch64.whl 5a0ac90e46fdb5649ab6369d1ab6104bfe5854ab19b645bf5cda0127a13034ae numpy-2.2.5-cp312-cp312-musllinux_1_2_x86_64.whl 0cd48122a6b7eab8f06404805b1bd5856200e3ed6f8a1b9a194f9d9054631beb numpy-2.2.5-cp312-cp312-win32.whl ced69262a8278547e63409b2653b372bf4baff0870c57efa76c5703fd6543282 numpy-2.2.5-cp312-cp312-win_amd64.whl 059b51b658f4414fff78c6d7b1b4e18283ab5fa56d270ff212d5ba0c561846f4 numpy-2.2.5-cp313-cp313-macosx_10_13_x86_64.whl 47f9ed103af0bc63182609044b0490747e03bd20a67e391192dde119bf43d52f numpy-2.2.5-cp313-cp313-macosx_11_0_arm64.whl 261a1ef047751bb02f29dfe337230b5882b54521ca121fc7f62668133cb119c9 numpy-2.2.5-cp313-cp313-macosx_14_0_arm64.whl 4520caa3807c1ceb005d125a75e715567806fed67e315cea619d5ec6e75a4191 numpy-2.2.5-cp313-cp313-macosx_14_0_x86_64.whl 3d14b17b9be5f9c9301f43d2e2a4886a33b53f4e6fdf9ca2f4cc60aeeee76372 numpy-2.2.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2ba321813a00e508d5421104464510cc962a6f791aa2fca1c97b1e65027da80d numpy-2.2.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a4cbdef3ddf777423060c6f81b5694bad2dc9675f110c4b2a60dc0181543fac7 numpy-2.2.5-cp313-cp313-musllinux_1_2_aarch64.whl 54088a5a147ab71a8e7fdfd8c3601972751ded0739c6b696ad9cb0343e21ab73 numpy-2.2.5-cp313-cp313-musllinux_1_2_x86_64.whl c8b82a55ef86a2d8e81b63da85e55f5537d2157165be1cb2ce7cfa57b6aef38b numpy-2.2.5-cp313-cp313-win32.whl d8882a829fd779f0f43998e931c466802a77ca1ee0fe25a3abe50278616b1471 numpy-2.2.5-cp313-cp313-win_amd64.whl e8b025c351b9f0e8b5436cf28a07fa4ac0204d67b38f01433ac7f9b870fa38c6 numpy-2.2.5-cp313-cp313t-macosx_10_13_x86_64.whl 8dfa94b6a4374e7851bbb6f35e6ded2120b752b063e6acdd3157e4d2bb922eba numpy-2.2.5-cp313-cp313t-macosx_11_0_arm64.whl 97c8425d4e26437e65e1d189d22dff4a079b747ff9c2788057bfb8114ce1e133 numpy-2.2.5-cp313-cp313t-macosx_14_0_arm64.whl 352d330048c055ea6db701130abc48a21bec690a8d38f8284e00fab256dc1376 numpy-2.2.5-cp313-cp313t-macosx_14_0_x86_64.whl 8b4c0773b6ada798f51f0f8e30c054d32304ccc6e9c5d93d46cb26f3d385ab19 numpy-2.2.5-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 55f09e00d4dccd76b179c0f18a44f041e5332fd0e022886ba1c0bbf3ea4a18d0 numpy-2.2.5-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 02f226baeefa68f7d579e213d0f3493496397d8f1cff5e2b222af274c86a552a numpy-2.2.5-cp313-cp313t-musllinux_1_2_aarch64.whl c26843fd58f65da9491165072da2cccc372530681de481ef670dcc8e27cfb066 numpy-2.2.5-cp313-cp313t-musllinux_1_2_x86_64.whl 1a161c2c79ab30fe4501d5a2bbfe8b162490757cf90b7f05be8b80bc02f7bb8e numpy-2.2.5-cp313-cp313t-win32.whl d403c84991b5ad291d3809bace5e85f4bbf44a04bdc9a88ed2bb1807b3360bb8 numpy-2.2.5-cp313-cp313t-win_amd64.whl b4ea7e1cff6784e58fe281ce7e7f05036b3e1c89c6f922a6bfbc0a7e8768adbe numpy-2.2.5-pp310-pypy310_pp73-macosx_10_15_x86_64.whl d7543263084a85fbc09c704b515395398d31d6395518446237eac219eab9e55e numpy-2.2.5-pp310-pypy310_pp73-macosx_14_0_x86_64.whl 0255732338c4fdd00996c0421884ea8a3651eea555c3a56b84892b66f696eb70 numpy-2.2.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d2e3bdadaba0e040d1e7ab39db73e0afe2c74ae277f5614dad53eadbecbbb169 numpy-2.2.5-pp310-pypy310_pp73-win_amd64.whl a9c0d994680cd991b1cb772e8b297340085466a6fe964bc9d4e80f5e2f43c291 numpy-2.2.5.tar.gz </details> --- ### Configuration 📅 **Schedule**: Branch creation - At any time (no schedule defined), Automerge - At any time (no schedule defined). 🚦 **Automerge**: Disabled by config. Please merge this manually once you are satisfied. ♻ **Rebasing**: Whenever PR is behind base branch, or you tick the rebase/retry checkbox. 🔕 **Ignore**: Close this PR and you won't be reminded about this update again. --- - [ ] <!-- rebase-check -->If you want to rebase/retry this PR, check this box --- This PR has been generated by [Renovate Bot](https://github.com/renovatebot/renovate). <!--renovate-debug:eyJjcmVhdGVkSW5WZXIiOiIzOS4yMzguMiIsInVwZGF0ZWRJblZlciI6IjM5LjIzOC4yIiwidGFyZ2V0QnJhbmNoIjoibWFzdGVyIiwibGFiZWxzIjpbXX0=-->
renovate-botbot added 1 commit 2025-04-22 15:15:34 +02:00
lucas merged commit f2d59194b6 into master 2025-04-22 15:37:24 +02:00
lucas deleted branch renovate/numpy-2.x 2025-04-22 15:37:24 +02:00
Sign in to join this conversation.
No reviewers
No labels
No milestone
No project
No assignees
1 participant
Notifications
Due date
The due date is invalid or out of range. Please use the format "yyyy-mm-dd".

No due date set.

Dependencies

No dependencies set.

Reference: lucas/ci-images#213
No description provided.